City of Athol Drinking Water Project
SRF Loan #DW1906 (pop. 696)
$3,286,000

Preliminary Green Project Reserve Justification

Categorical GPR Documentation

1. **REPLACES DISTRIBUTION PIPING** (Water Efficiency). Categorical GPR per 2.4-1: *reducing water consumption*; per 2.4-3: *Efficient water use...reducing the amount of energy required by a drinking water system...therefore, there are also energy and financial savings*; also per 2.4-4: *Proper water infrastructure management should address where water losses could be occurring...fix them...replacing aging infrastructure*; also per 2.5-2: *Distribution pipe replacement ...to reduce water loss and prevent water main breaks* ($yyyyyy).

2. **REPLACING 190 MALFUNCTIONING WATER METERS WITH NEW METERS** (Water Efficiency). Categorical GPR per 2.2-3a: *replacing existing malfunctioning water meters*; also 2.2-9: *Projects that result from a water efficiency assessment such as water audits* ($xxxxx).

Business Case GPR Documentation

3. **INSTALLS A SCADA SYSTEM** (Energy Efficiency) Business Case GPR per 3.5-1: *energy efficient retrofits*; also, per 3.5-7: *automated and remote control systems (SCADA) that achieve substantial energy savings* ($yyyyyy).

1 Information in red font—along with all data, including all costs, and additional text as required — to be provided by the loan recipient in the GPR Technical Memorandum due at the time of final design approval.
1. **Existing Water Meter Replacement**

Summary
- Replacing 190 malfunctioning water meters with new meters. In addition to the meter component, the overall project also includes transmission line replacement and improvements to the distribution system.
- Loan amount = $3,286,000
- GPR portion of loan (meters) = xx% ($75,000)

Background
- The existing water meters are approximately 15 years old, are not radio-read, are malfunctioning, and not reliable.
- Increased water loss, due to leaks and inaccurate meter readings, are partly attributed to the old meters.

Results
- A water study conducted by the City indicated the water meters may be one source of the xx% water leakage measured in the audit.
- The audit indicated the meters were not properly accounting for flows and that this type of meter could not be recalibrated.
- The Facilities Planning Study recommended the replacement of the meters.

Other Benefits
- Replacing the old meters will increase water efficiency by decreasing the amount of water lost and by providing more accurate water-use information to customers and the system.

Conclusion
- Accurate metering of water consumption is an important conservation measure because providing more accurate water bills sends a strong price signal to customers and will result in more efficient consumption.
- Water leakage and inaccuracy increases with water meter age; therefore, an investment in water meters today will lead to additional water and dollar savings over time. Also, the water savings from the meter replacement will extend the life of the water supply and delay capital expansion projects.
- **GPR Costs**: Replacing malfunctioning water meters with AMR meters = $xxxxxx
- **GPR Justification**: The project is Categorically GPR-eligible (Water Efficiency) per Section 2.2-3a: replacing existing malfunctioning water meters; also GPR-eligible per Section 2.2-9: projects that result from a water efficiency assessment such as water audits.

2 City of Athol Facilities Planning Study, May 2019 Update, Keller Engineers
Summary

- Distribution and transmission piping requires replacement in order to: (i) reduce water losses; (ii) reduce pumping costs; and (iii) provide adequate drinking water flow and pressure.
- Loan amount = $3,286,000
- Estimated energy efficient (green) portion of loan = $xxxxxx (yy%)

Background

- The City of Athol owns and operates a public drinking water system. The system includes three storage tanks, two existing wells, and about 9 miles of water distribution pipe, largely constructed in the 1970’s and 1980’s with the final storage tank added in the 1990’s.
- The source water for the system is produced by two wells. Storage for the system is accomplished with three storage tanks, two ground level steel tanks and an elevated steel tower tank.
- The distribution system consists of 10, 6, and 4-inch PVC mains.
- Current peak daily water demand = xx gpm.
- There are currently 5500 LF of undersized, aging, and possibly leaking distribution and transmission lines.

Results

- Approximately 6,500 feet of new pipeline will be installed, replacing the old pipe.
 Replacing these lines with properly sized lines will result in:
 - Saving water, as it has been calculated the existing system currently experiences losses of YY%; and
 - Saving energy through reduced pumping costs for less energy to pump through properly sized lines (reduced friction factor).

Conclusion

- The replacement of undersized water pipe with properly sized pipe decreases system friction, increases water flow, and saves energy by reducing the amount of pumping required.
- **GPR Costs**: Distribution ($xxxxx) + Transmission System ($yyyyyy) Upgrades = $zzzzzzzz
- **GPR Justification**: The prioritized replacement of undersized water distribution piping as recommended in the Facility Planning Study is GPR-eligible by a Business Case (Water Efficiency) GPR per 2.4-1...reducing water consumption; 2.4-3: Efficient water use...reducing the amount of energy required by a drinking water system...therefore, there are also energy and financial savings; also GPR per 3.5-5: Projects that achieve the remaining increments of energy efficiency.

4 City of Athol Facilities Planning Study, May 2019 Update, Keller Engineers
3. SCADA CONTROL TECHNOLOGY (PRELIMINARY)

Summary

- Energy efficiencies will be realized from new SCADA system to improve remote electronic sensing and control of the water system.
- Loan amount = $3,286,000
- Estimated energy efficiency (green) portion of loan = X% ($xxxxxx)
- Estimated total annual energy and labor savings = $ yyyy

Background/ Results

- Installing a supervisory control and data acquisition (SCADA) will considerably reduce labor costs, reduce energy consumption, and monitor the system.

Energy Efficiency Improvements

- The new SCADA system will monitor activities in all three wells and both the new standpipe and elevated water storage tank.
- The central SCADA computer will be located at City Hall.
- This will result in energy savings to the City by minimizing the troubleshooting and travel time of system operators, maximize the life of the system equipment, and providing automated reports of the system that allow the district to make informed decisions about their water system.
- Remote SCADA monitoring saves labor costs = 2 people 6 hour per day in the summer + 1 person 1 hour per day in the winter = $43,002/yr. in labor costs.

Conclusion

- Preliminary Estimate: SCADA savings would be approximately $43,002 per year in labor costs = payback of 3.2 years, therefore SCADA costs are GPR-eligible.
- Additional process cost savings will be delineated during the design stage by the design engineer in the Final GPR Justification.
- GPR Costs:
 - SCADA =$yyyyy
- GPR Justification: SCADA system costs are GPR-eligible by a Business Case per 3.5-7: automated and remote control systems (SCADA) that achieve substantial energy savings.

5 Cost savings delineated by the design engineer.